Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(11): 5079-5092, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451152

RESUMO

Redox conditions in groundwater may markedly affect the fate and transport of nutrients, volatile organic compounds, and trace metals, with significant implications for human health. While many local assessments of redox conditions have been made, the spatial variability of redox reaction rates makes the determination of redox conditions at regional or national scales problematic. In this study, redox conditions in groundwater were predicted for the contiguous United States using random forest classification by relating measured water quality data from over 30,000 wells to natural and anthropogenic factors. The model correctly predicted the oxic/suboxic classification for 78 and 79% of the samples in the out-of-bag and hold-out data sets, respectively. Variables describing geology, hydrology, soil properties, and hydrologic position were among the most important factors affecting the likelihood of oxic conditions in groundwater. Important model variables tended to relate to aquifer recharge, groundwater travel time, or prevalence of electron donors, which are key drivers of redox conditions in groundwater. Partial dependence plots suggested that the likelihood of oxic conditions in groundwater decreased sharply as streams were approached and gradually as the depth below the water table increased. The probability of oxic groundwater increased as base flow index values increased, likely due to the prevalence of well-drained soils and geologic materials in high base flow index areas. The likelihood of oxic conditions increased as topographic wetness index (TWI) values decreased. High topographic wetness index values occur in areas with a propensity for standing water and overland flow, conditions that limit the delivery of dissolved oxygen to groundwater by recharge; higher TWI values also tend to occur in discharge areas, which may contain groundwater with long travel times. A second model was developed to predict the probability of elevated manganese (Mn) concentrations in groundwater (i.e., ≥50 µg/L). The Mn model relied on many of the same variables as the oxic/suboxic model and may be used to identify areas where Mn-reducing conditions occur and where there is an increased risk to domestic water supplies due to high Mn concentrations. Model predictions of redox conditions in groundwater produced in this study may help identify regions of the country with elevated groundwater vulnerability and stream vulnerability to groundwater-derived contaminants.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Algoritmo Florestas Aleatórias , Monitoramento Ambiental , Abastecimento de Água , Solo , Manganês , Oxirredução , Poluentes Químicos da Água/análise
2.
Environ Monit Assess ; 196(3): 248, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332337

RESUMO

Increases in fluxes of nitrogen (N) and phosphorus (P) in the environment have led to negative impacts affecting drinking water, eutrophication, harmful algal blooms, climate change, and biodiversity loss. Because of the importance, scale, and complexity of these issues, it may be useful to consider methods for prioritizing nutrient research in representative drainage basins within a regional or national context. Two systematic, quantitative approaches were developed to (1) identify basins that geospatial data suggest are most impacted by nutrients and (2) identify basins that have the most variability in factors affecting nutrient sources and transport in order to prioritize basins for studies that seek to understand the key drivers of nutrient impacts. The "impact" approach relied on geospatial variables representing surface-water and groundwater nutrient concentrations, sources of N and P, and potential impacts on receptors (i.e., ecosystems and human health). The "variability" approach relied on geospatial variables representing surface-water nutrient concentrations, factors affecting sources and transport of nutrients, model accuracy, and potential receptor impacts. One hundred and sixty-three drainage basins throughout the contiguous United States were ranked nationally and within 18 hydrologic regions. Nationally, the top-ranked basins from the impact approach were concentrated in the Midwest, while those from the variability approach were dispersed across the nation. Regionally, the top-ranked basin selected by the two approaches differed in 15 of the 18 regions, with top-ranked basins selected by the variability approach having lower minimum concentrations and larger ranges in concentrations than top-ranked basins selected by the impact approach. The highest ranked basins identified using the variability approach may have advantages for exploring how landscape factors affect surface-water quality and how surface-water quality may affect ecosystems. In contrast, the impact approach prioritized basins in terms of human development and nutrient concentrations in both surface water and groundwater, thereby targeting areas where actions to reduce nutrient concentrations could have the largest effect on improving water availability and reducing ecosystem impacts.


Assuntos
Ecossistema , Rios , Humanos , Monitoramento Ambiental , Eutrofização , Proliferação Nociva de Algas , Nutrientes , Fósforo/análise , Nitrogênio/análise
4.
Sci Total Environ ; 800: 150200, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34625279

RESUMO

Increases in nitrogen applications to the land surface since the 1950s have led to a cascade of negative environmental impacts, including degradation of drinking water supplies, nutrient enrichment of aquatic ecosystems and contributions to global climate change. In this study, groundwater, streambed porewater, and stream sampling were used to establish trends in nitrate concentrations and how redox gradients influence nitrate transport across diverse glacial terranes. Decadal sampling has found that elevated nitrate concentrations in shallow groundwater beneath cropland have been sustained for decades. Redox gradients established in the saturated zone using dissolved O2, iron, nitrate and excess N2 from denitrification suggest that nitrate-bearing zones are thin in glacial terranes dominated by fine materials. These thin nitrate-bearing zones lead to suboxic, low nitrate streambed porewater and limit the contributions of nitrate to streams from slow-flow groundwater. In contrast, thick oxic zones in more coarse-grained glacial terranes allow nitrate to reach deeper groundwater, resulting in streambed porewater with elevated nitrate concentrations and causing a large portion of stream nitrate to be derived from slow-flow groundwater. Groundwater age tracer data indicate that denitrification occurs more quickly in the terrane dominated by fine material than in the more coarse-grained terrane. The quicker depletion of nitrate in the more fine-grained terrane suggests that the thinner oxic zone in this terrane is due, in part, to the greater availability and reactivity of electron donors in this terrane than in the more coarse-grained terrane. Groundwater age tracer data and hydrograph separation analysis suggest that saturated zone lag times between when changes in land use practices occur and when changes in stream water are fully observed may vary widely across hydrogeologic settings.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Nitratos/análise , Oxirredução , Rios , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 55(2): 902-911, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33356185

RESUMO

Elevated nitrogen concentrations in streams and rivers in the Chesapeake Bay watershed have adversely affected the ecosystem health of the bay. Much of this nitrogen is derived as nitrate from groundwater that discharges to streams as base flow. In this study, boosted regression trees (BRTs) were used to relate nitrate concentrations in base flow (n = 156) to explanatory variables describing nitrogen sources, geology, and soil and catchment characteristics. From these relations, a BRT model was developed to predict base flow nitrate concentrations in streams throughout the Chesapeake Bay watershed. The highest base flow nitrate concentrations were associated with intensive agricultural land use, carbonate geology, and sparse riparian canopy, which suggested that reduced nitrogen inputs, particularly over carbonate terrane, are critical for limiting nitrate concentrations. The lowest nitrate concentrations in the BRT model were associated with extensive riparian canopy, high levels of organic carbon in soils, and suboxic conditions at shallow depths, which suggested that denitrification in the subsurface, particularly in the riparian zone, is limiting base flow nitrate concentrations. Nitrate transport from aquifers to streams can take decades to occur, resulting in decades-long lag times between the time when a land-use activity is implemented and when its effects are fully observed in streams. Predictive models of base flow nitrate concentrations in streams will help identify which portions of a watershed are likely to have large fractions of total stream nitrogen load derived from pathways with significant lag times.


Assuntos
Água Subterrânea , Rios , Ecossistema , Monitoramento Ambiental , Nitratos/análise , Nitrogênio/análise
6.
Environ Monit Assess ; 192(7): 458, 2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32594332

RESUMO

The US Geological Survey (USGS) is currently (2020) integrating its water science programs to better address the nation's greatest water resource challenges now and into the future. This integration will rely, in part, on data from 10 or more intensively monitored river basins from across the USA. A team of USGS scientists was convened to develop a systematic, quantitative approach to prioritize candidate basins for this monitoring investment to ensure that, as a group, the 10 basins will support the assessment and forecasting objectives of the major USGS water science programs. Candidate basins were the level-4 hydrologic units (HUC04) with some of the smaller HUC04s being combined; median candidate-basin area is 46,600 km2. Candidate basins for the contiguous United States (CONUS) were grouped into 18 hydrologic regions. Ten geospatial variables representing land use, climate change, water use, water-balance components, streamflow alteration, fire risk, and ecosystem sensitivity were selected to rank candidate basins within each of the 18 hydrologic regions. The two highest ranking candidate basins in each of the 18 regions were identified as finalists for selection as "Integrated Water Science Basins"; final selection will consider input from a variety of stakeholders. The regional framework, with only one basin selected per region, ensures that as a group, the basins represent the range in major drivers of the hydrologic cycle. Ranking within each region, primarily based on anthropogenic stressors of water resources, ensures that settings representing important water-resource challenges for the nation will be studied.


Assuntos
Ecossistema , Rios , Monitoramento Ambiental , Hidrologia , Inquéritos e Questionários
7.
Environ Sci Technol ; 53(24): 14152-14164, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31749357

RESUMO

Repeat sampling and age tracers were used to examine trends in nitrate, arsenic, and uranium concentrations in groundwater beneath irrigated cropland. Much higher nitrate concentrations in shallow modern groundwater were observed at both the Columbia Plateau and High Plains sites (median values of 10.2 and 15.4 mg/L as N, respectively) than in groundwater that recharged prior to the onset of intensive irrigation (median values of <1 and <4 mg/L as N, respectively). Repeat sampling of these well networks indicates that high nitrate concentrations in modern, shallow groundwater have been sustained for decades, posing a future risk to older, deeper groundwater used for drinking water. In fact, nitrate concentrations in older modern water (30-60 years since recharge) at the High Plains site have increased in the past decade. Groundwater irrigated areas in the Columbia Plateau tend to have higher nitrate concentrations in groundwater than surface water irrigated areas, suggesting repeated dissolution of land applied fertilizer during recirculation may be an important factor causing high nitrate concentrations in groundwater. Mobilization of uranium and arsenic by land surface activities is suggested by the higher concentrations of these constituents in modern, shallow groundwater than in older, deeper groundwater at the Columbia Plateau site. Bicarbonate concentrations in modern groundwater are positively correlated with uranium (r = 0.72, p < 0.01), suggesting bicarbonate may mobilize uranium in this system. A positive correlation between arsenic and phosphorus concentrations in modern groundwater (r = 0.55, p < 0.01) suggests that phosphate from fertilizer outcompetes arsenate for sorption sites, mobilizing sorbed arsenic derived from past pesticide use or other sources.


Assuntos
Arsênio , Água Subterrânea , Urânio , Poluentes Químicos da Água , Produtos Agrícolas , Monitoramento Ambiental , Nitratos
8.
Environ Sci Technol ; 49(16): 9657-64, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26230618

RESUMO

Defining the oxic-suboxic interface is often critical for determining pathways for nitrate transport in groundwater and to streams at the local scale. Defining this interface on a regional scale is complicated by the spatial variability of reaction rates. The probability of oxic groundwater in the Chesapeake Bay watershed was predicted by relating dissolved O2 concentrations in groundwater samples to indicators of residence time and/or electron donor availability using logistic regression. Variables that describe surficial geology, position in the flow system, and soil drainage were important predictors of oxic water. The probability of encountering oxic groundwater at a 30 m depth and the depth to the bottom of the oxic layer were predicted for the Chesapeake Bay watershed. The influence of depth to the bottom of the oxic layer on stream nitrate concentrations and time lags (i.e., time period between land application of nitrogen and its effect on streams) are illustrated using model simulations for hypothetical basins. Regional maps of the probability of oxic groundwater should prove useful as indicators of groundwater susceptibility and stream susceptibility to contaminant sources derived from groundwater.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Geologia , Água Subterrânea/análise , Maryland , Modelos Teóricos , Nitratos/análise , Nitrogênio/análise , Oxirredução , Rios , Solo , Virginia
9.
J Environ Qual ; 43(6): 1980-90, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25602215

RESUMO

We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO), ammonium (NH), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (/, , , and ) correlated with NO retention but not NH or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO demand. However, because the fraction of median reach-scale travel time due to transient storage () was ≤1.2% across the sites, only a relatively small demand for NO could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

10.
Environ Sci Technol ; 47(8): 3623-9, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23530900

RESUMO

The influence of hydrogeologic setting on the susceptibility of streams to legacy nitrate was examined at seven study sites having a wide range of base flow index (BFI) values. BFI is the ratio of base flow to total streamflow volume. The portion of annual stream nitrate loads from base flow was strongly correlated with BFI. Furthermore, dissolved oxygen concentrations in streambed pore water were significantly higher in high BFI watersheds than in low BFI watersheds suggesting that geochemical conditions favor nitrate transport through the bed when BFI is high. Results from a groundwater-surface water interaction study at a high BFI watershed indicate that decades old nitrate-laden water is discharging to this stream. These findings indicate that high nitrate levels in this stream may be sustained for decades to come regardless of current practices. It is hypothesized that a first approximation of stream vulnerability to legacy nutrients may be made by geospatial analysis of watersheds with high nitrogen inputs and a strong connection to groundwater (e.g., high BFI).


Assuntos
Nitratos/análise , Rios/química , Cloretos/análise , Fenômenos Geológicos , Água Subterrânea/química , Nitrogênio/análise , Oxigênio/análise , Porosidade , Água/química
12.
J Environ Qual ; 39(1): 154-67, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20048303

RESUMO

Four local-scale sites in areas with similar corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] agriculture were studied to determine the effects of different hydrogeologic settings of the Northern Atlantic Coastal Plain (NACP) on the transport of nutrients and pesticides in groundwater. Settings ranged from predominantly well-drained soils overlying thick, sandy surficial aquifers to predominantly poorly drained soils with complex aquifer stratigraphy and high organic matter content. Apparent age of groundwater, dissolved gases, N isotopes, major ions, selected pesticides and degradates, and geochemical environments in groundwater were studied. Agricultural chemicals were the source of most dissolved ions in groundwater. Specific conductance was strongly correlated with reconstructed nitrate (the sum of N in nitrate and N gas) (R(2) = 0.81, p < 0.0001), and is indicative of the relative degree of agricultural effects on groundwater. Trends in nitrate were primarily related to changes in manure and fertilizer use at the well-drained sites where aquifer conditions were consistently oxic. Nitrate was present in young groundwater but completely removed over time through denitrification at the poorly drained sites where there were variations in chemical input and in geochemical environment. Median concentrations of atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine), metolachlor (2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide), and some of their common degradates were higher at well-drained sites than at poorly drained sites, with concentrations of degradates generally higher than those of the parent compounds at all sites. An increase in the percentage of deethylatrazine to total atrazine over time at one well-drained site may be related to changes in manure application.


Assuntos
Fertilizantes/análise , Praguicidas/metabolismo , Movimentos da Água , Poluentes Químicos da Água/metabolismo , Água/química , Agricultura , Oceano Atlântico , Monitoramento Ambiental , Sedimentos Geológicos/química , Praguicidas/química , Estados Unidos , Reforma Urbana , Poluentes Químicos da Água/química , Abastecimento de Água
13.
J Environ Qual ; 38(5): 1892-900, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19643755

RESUMO

Understanding nutrient pathways to streams will improve nutrient management strategies and estimates of the time lag between when changes in land use practices occur and when water quality effects that result from these changes are observed. Nitrate and orthophosphate (OP) concentrations in several environmental compartments were examined in watersheds having a range of base flow index (BFI) values across the continental United States to determine the dominant pathways for water and nutrient inputs to streams. Estimates of the proportion of stream nitrate that was derived from groundwater increased as BFI increased. Nitrate concentration gradients between groundwater and surface water further supported the groundwater source of nitrate in these high BFI streams. However, nitrate concentrations in stream-bed pore water in all settings were typically lower than stream or upland groundwater concentrations, suggesting that nitrate discharge to streams was not uniform through the bed. Rather, preferential pathways (e.g., springs, seeps) may allow high nitrate groundwater to bypass sites of high biogeochemical transformation. Rapid pathway compartments (e.g., overland flow, tile drains) had OP concentrations that were typically higher than in streams and were important OP conveyers in most of these watersheds. In contrast to nitrate, the proportion of stream OP that is derived from ground water did not systematically increase as BFI increased. While typically not the dominant source of OP, groundwater discharge was an important pathway of OP transport to streams when BFI values were very high and when geochemical conditions favored OP mobility in groundwater.


Assuntos
Nitratos/análise , Fosfatos/análise , Rios/química , Movimentos da Água , Abastecimento de Água , Monitoramento Ambiental , Indiana , Maryland , Minnesota , Nebraska , Nitratos/química , Fosfatos/química , Washington
14.
J Environ Qual ; 37(3): 1133-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18453433

RESUMO

Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.


Assuntos
Agricultura , Água Doce/química , Nitratos/análise , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Modelos Teóricos
15.
J Contam Hydrol ; 94(1-2): 139-55, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17651860

RESUMO

Tracer-based ground-water ages, along with the concentrations of pesticides, nitrogen species, and other redox-active constituents, were used to evaluate the trends and transformations of agricultural chemicals along flow paths in diverse hydrogeologic settings. A range of conditions affecting the transformation of nitrate and pesticides (e.g., thickness of unsaturated zone, redox conditions) was examined at study sites in Georgia, North Carolina, Wisconsin, and California. Deethylatrazine (DEA), a transformation product of atrazine, was typically present at concentrations higher than those of atrazine at study sites with thick unsaturated zones but not at sites with thin unsaturated zones. Furthermore, the fraction of atrazine plus DEA that was present as DEA did not increase as a function of ground-water age. These findings suggest that atrazine degradation occurs primarily in the unsaturated zone with little or no degradation in the saturated zone. Similar observations were also made for metolachlor and alachlor. The fraction of the initial nitrate concentration found as excess N2 (N2 derived from denitrification) increased with ground-water age only at the North Carolina site, where oxic conditions were generally limited to the top 5 m of saturated thickness. Historical trends in fluxes to ground water were evaluated by relating the times of recharge of ground-water samples, estimated using chlorofluorocarbon concentrations, with concentrations of the parent compound at the time of recharge, estimated by summing the molar concentrations of the parent compound and its transformation products in the age-dated sample. Using this approach, nitrate concentrations were estimated to have increased markedly from 1960 to the present at all study sites. Trends in concentrations of atrazine, metolachlor, alachlor, and their degradates were related to the timing of introduction and use of these compounds. Degradates, and to a lesser extent parent compounds, were detected in ground water dating back to the time these compounds were introduced.


Assuntos
Monitoramento Ambiental , Nitratos/análise , Praguicidas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Agricultura , Geografia , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxigênio/metabolismo , Praguicidas/metabolismo , Poluentes do Solo/metabolismo , Fatores de Tempo , Movimentos da Água , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...